通过微处理器发出的第五控制信号和第六控制信号,控制电压源档位的切换,可切换第三mos管的栅极电压,从而调节驱动放大电路的放大倍数。通过调节驱动放大电路的放大倍数使射频功率放大器电路处于不同的增益模式中。第二电压信号vcc用于给第二mos管和第三mos管的漏级供电,其中,通过微处理器控制vcc的大小。在一些实施例中,当第二mos管和第三mos管的沟道宽度为2mm时,微控制器控制vcc为,控制电流源为12ma,浙江大功率射频功率放大器设计,控制电压源为,使射频功率放大器电路实现非负增益模式;微控制器控制vcc为,浙江大功率射频功率放大器设计,控制电流源为2ma,控制电压源为,使射频功率放大器电路实现负增益模式。显然,可以设置更多的电压源的档位和电流源的档位,通过切换不同的电压源档位、电流源档位,并对第二mos管和第三mos管的漏级的供电电压vcc进行控制,浙江大功率射频功率放大器设计,从而实现增益的线性调节。需要说明的是,第二偏置电路与偏置电路结构相同,其调节方法也与偏置电路相同,当第四mos管和第五mos管的沟道宽度为5mm时,微控制器控制第四mos管对应的电流源为45ma,控制第五mos管对应的电压源为,使射频功率放大器电路实现非负增益模式;微控制器控制第四mos管对应的电流为6ma,控制第五mos管对应的电压源为。由于功率放大器的源和负载都是50欧姆,输入匹配电路和输出匹配 电路主要是对一端是50欧姆。浙江大功率射频功率放大器设计
对于各个电路和具体的增益控制方法的介绍,可参见前面的实施例的描述,此处不再详述。应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。上述本申请实施例序号为了描述,不实施例的优劣。需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的电路中还存在另外的相同要素。以上所述,为本申请的实施方式,但本申请的保护范围并不局限于此。江西大功率射频功率放大器经验丰富噪声系数是指输入端信噪比与放大器输出端信噪比的比值,单位常用“dB'’。
即射频功率放大器的配置状态电阻值为射频功率放大器211的电阻值是r11,射频功率放大器212、213和214的电阻值仍是r2、r3和r4。计算射频功率放大器检测模块的电阻值,如果射频功率放大器211的射频功率放大器检测模块的电阻值是r11,与配置状态电阻值相同,则表示射频功率放大器211已经开启;如果射频功率放大器211的射频功率放大器检测模块的电阻值是r1,与配置状态电阻值不相同,则表示射频功率放大器211未开启,移动终端开启射频功率放大器211。计算的各个射频功率放大器检测模块的电阻值与配置状态电阻值均相同时,则射频功率放大器已经配置完成。其中,频段切换前,射频功率放大器的初始状态包括开启状态和关闭状态,包括两种情况:全部是关闭状态或者部分关闭,部分开启。频段切换时,移动终端会对所有射频功率放大器发出配置指令,射频功率放大器检测模块的电阻值与本次指令要求的电阻值未有变化,则不作操作,否则按当前指令的电阻值进行射频功率放大器的相关配置。103、比较所述射频功率放大器检测模块的电阻值与所述配置状态电阻值。例如,射频功率放大器检测模块的电阻值即移动终端切换频段时,此时射频功率放大器的电阻值。
宽带pa通常采用cllc、lccl、两级或多级lc匹配。cllc结构,采用串联电容到地电感级联串联电感到地电容;lccl采用串联电感到地电容级联串联电容到地电感。这两种结构优点是结构较简单,插损较小;缺点是宽带性能一致性不好,在不同的频率性能不一致,而且谐波性能差。两级或多级lc结构,采用两级或多级串联电感到地电容级联在一起。这种结构优点是谐波性能好,可以实现宽带一致的阻抗变换;缺点是宽带性能一致性和插损之间存在折中,高频点插损较大。采用普通结构变压器实现功率合成和阻抗变换的pa,只采用变压器及其输入输出匹配电容。这种结构优点是结构相对简单,缺点是难以实现宽带功率放大器,宽带性能一致性差,谐波性能也较差。采用普通结构变压器级联lc匹配实现功率合成和阻抗变换的pa,采用变压器及其输入输出匹配电容,输出级联lc匹配滤波电路。这种结构优点是谐波性能好,可以实现宽带一致的阻抗变换;缺点是宽带性能一致性和插损之间存在折中,高频点插损较大。技术实现要素:本发明实施例解决的是如何实现射频功率放大器在较宽的频率范围内实现一致性的同时,具有较好的谐波性能和工作效率。为解决上述技术问题,本发明实施例提供一种射频功率放大器。微波固态功率放大器的电路设计应尽可能合理简化。
射频功率放大器电路,用于根据微控制器的控制,对射频收发器的输出信号进行放大或衰减;天线,用于发射射频功率放大器电路的输出信号。由于终端(如水电表)分布范围广,每个终端距离基站的距离各不相同,距离基站远的终端,其信道衰减量大,因此需要射频功率放大器电路的输出功率大;而距离基站近的终端,其信道衰减量小,因此需要射频功率放大器电路的输出功率小。微控制器通过控制射频功率放大器电路的输入功率和增益,从而控制其输出功率,使其输出功率满足要求。例如,基站使用预先确定的通信资源发送同步信号(synchronizationchannel,sch)和广播信号(broadcastchannel,bch)。然后,终端首先捕捉sch,从而确保与基站之间的同步。然后,终端通过读取bch而获取基站特定的参数(如频率、带宽等)。终端在获取到基站特定的参数之后,通过对基站进行连接请求,建立与基站的通信。基站根据需要对建立了通信的终端通过物理下行控制信道(physicaldownlinkcontrolchannel,pdcch)等控制信道发送控制信息。终端中的微控制器通过通信模组接收到控制信息后,控制输出功率,使其满足要求。基站在与终端的通信过程中,根据路径损耗(pathloss,pl)确定链路预算(linkbudget,lb)。功率放大器有GAN,LDMOS初期主要面向移动电话基站、雷达,应用于 无线电广播传输器以及微波雷达与导航系统。河北V段射频功率放大器价格
功放中使用电感器一般有直线电感、折线电感、单环电感和螺旋电感等。在射频/微波 IC中一般用方形螺旋电感。浙江大功率射频功率放大器设计
gr为基站的接收机天线增益,单位为分贝;rs为接收机灵敏度,是在可接受的信噪比(signaltonoiseratio,snr)情况下,系统能探测到的小的射频信号。rs的计算可以参见公式(3):rs=-174dbm/hz+nf+10logb+snrmin(3);其中,-174dbm/hz为热噪声底限;nf为全部接收机噪声,单位为分贝;b为接收机整体带宽,snrmin则为小信噪比。一般来说,射频功率放大器电路存在高功率模式(非负增益),率模式(非负增益)和低功率模式(负增益)这三种模式。由于射频收发器的线性功率输出范围为-35dbm~0dbm,因此,若超出这一范围,信号将产生非线性。当射频功率放大器电路工作在高功率模式时,需要射频功率放大器电路的饱和功率为,此时信号将产生非线性,其功率需要小于,此时射频功率放大器电路的线性增益为30db,因此,其线性输出功率范围为:-5dbm~。当射频功率放大器电路工作在率模式时,需要射频功率放大器电路的饱和功率为20dbm,此时信号将产生非线性,其功率需要小于10dbm才能实现线性输出,此时射频功率放大器电路的线性增益为15db,因此,其线性输出功率范围为:-20dbm~10dbm。当射频功率放大器电路工作在低功率模式(负增益)时,需要射频功率放大器电路的饱和功率为5dbm。浙江大功率射频功率放大器设计
能讯通信科技(深圳)有限公司专注技术创新和产品研发,发展规模团队不断壮大。目前我公司在职员工以90后为主,是一个有活力有能力有创新精神的团队。公司以诚信为本,业务领域涵盖射频功放,宽带射频功率放大器,射频功放整机,无人机干扰功放,我们本着对客户负责,对员工负责,更是对公司发展负责的态度,争取做到让每位客户满意。一直以来公司坚持以客户为中心、射频功放,宽带射频功率放大器,射频功放整机,无人机干扰功放市场为导向,重信誉,保质量,想客户之所想,急用户之所急,全力以赴满足客户的一切需要。
文章来源地址: http://txcp.m.chanpin818.com/wlcssb/deta_12120752.html
免责声明: 本页面所展现的信息及其他相关推荐信息,均来源于其对应的用户,本网对此不承担任何保证责任。如涉及作品内容、 版权和其他问题,请及时与本网联系,我们将核实后进行删除,本网站对此声明具有最终解释权。